TECHNICAL BULLETIN

PURELL® Advanced Hygienic Hand Rub Technical Data

INDICATIONS: Hygienic hand rub to help reduce bacteria on the skin that may be harmful METHOD OF USE: For Hygienic Hand Rub: Apply approximately 3 mL of PURELL in the palm of your hands, and rub until fully evaporates (circa 30 seconds), without forgetting fingernails, thumbs, between fingers and wrists.

Physical Properties

Appearance: Clear Liquid

Fragrance: Fragrance Free

Form: Gel

pH: 6.5 - 8.5

INCI Name*
Active:
Ethyl alcohol 70% v/v
Also Contains:
Aqua
Isopropyl Alcohol
Caprylyl Glycol
Glycerin
Isopropyl Myristate
Tocopheryl Acetate
Acrylates/C10-30 Alkyl Acrylate Crosspolymer
Aminomethyl Propanol

^{*}International Nomenclature Cosmetic Ingredient

Efficacy Data - In Vivo

European Standard prEN 1500 (2009-11) Test

Objective: To evaluate the antimicrobial efficacy of product

formulations using the European Standard for Hygienic

Handrubs.

Description of Test: All testing was performed in accordance with prEN 1500

(2009-11), the European Standard for testing of a hygienic

handrub.

Independent HygCen Centrum für Hygiene und medizinische Laboratory: Produktsicherhelt GmbH, Schwerin, Germany

Date: 6 September 2010

Conclusions: The test product when used at 3 ml for 30 seconds fulfills

the requirements of prEN 1500 (2009-11).

European Standard EN 1500 "Standard Methods of the DGHM for Testing Chemical

Disinfection Procedures (Sept. 2001) Test

Objective: To evaluate the antimicrobial efficacy of product

formulations using the EN 1500 "Standard Methods of the

DGHM for Testing Chemical Disinfection Procedures

(Sept. 2001) for Hygienic Handrubs.

Description of Test: All testing was performed in accordance with EN 1500

"Standard Methods of the DGHM for Testing Chemical

Disinfection Procedures (Sept. 2001).

Independent

Priv. Doz. med. Habil. Georg Schrader, Weimar, Germany

Laboratory:

Date: 13 September 2011

Conclusions: The test product when used at 3 ml for 30 seconds fulfills

the requirements of EN 1500 "Standard Methods of the

DGHM for Testing Chemical Disinfection Procedures (Sept. 2001).

European Standard DIN EN 12791 (October 2005) Test

Objective: To determine if the test product is suitable for surgical

hand disinfection.

Description of Test: European Norm DIN EN 12791 (October 2005): Test for the

evaluation of surgical hand disinfection (phase2, step 2).

Independent HygCen Centrum für Hygiene und medizinische Laboratory: Produktsicherhelt GmbH, Schwerin, Germany

Date: 9 February 2012

Conclusions: According to DIN EN 12791 (October 2005), the test

product is suitable for surgical hand disinfection with the additional feature of a sustained effect in the following

application:

Rub 3ml-portions of product onto the hands and keep

them wet for 120 seconds.

Healthcare Personnel Handwash

Objective: This study evaluated the antimicrobial effectiveness of

one (1) test product and one (1) control product using a Health-Care Personnel Handwash Procedure, as per

methodology specified by the Food and Drug

Administration (FR 59:116, 17 Jun 94).

Description of Test: Twenty-four (24) subjects utilized test product and

twenty-seven (27) utilized the positive control reference product (51 total). The antimicrobial effectiveness of test product and control product for use as Health-Care Personnel Handwashes were determined using eleven (11) consecutive hand contaminations, the first followed by a sample for baseline, and the remaining ten (10) by product applications. Microbial samples were taken at baseline and after product applications one (1), three (3), seven (7), and ten (10). All sampling of the hands was performed using the Glove Juice Sampling Procedure. Serratia marcescens (ATCC #14756) was the marker

organism used for hand contaminations. The FDA

requires products to achieve a minimum 2 log₁₀ reduction after one application and 3 log₁₀ reduction after 10

applications.

Independent

BioScience Laboratories, Inc., Bozeman, MT, USA

Laboratory:

Date: 29 October 2010

Results:

Application Number	Test Product Log ₁₀ Reduction	Control Product Log ₁₀ Reduction
1	3.20	3.05
10	3.60	4.76

Conclusions: Test product meets US FDA Healthcare Personnel

Handwash requirements when 2 ml of product is applied

to the hands and rubbed in until dry.

Efficacy Data – *In Vitro*

European Standard DIN EN 1276 (01/2010) Test

Objective: To determine basic bactericidal activity of test product

according to European Norm DIN EN 1276 (01/2010)

European Norm DIN EN 1276 (01/2010): Quantitative **Description of Test:**

> suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic and institutional areas (phase 2, step

1)

Independent HygCen Centrum für Hygiene und medizinische Produktsicherhelt GmbH, Schwerin, Germany Laboratory:

Date: 8 September 2010

Conclusions: Test product is bactericidal according to European Norm

DIN EN 1276 (01/2010) after 15 seconds contact at 20°C under clean conditions (0.03% bovine albumin) versus Staphylococcus aureus ATCC 6538, Enterococcus hirae

ATCC 10541, Escherichia coli ATCC 10536 and

Pseudomonas aeruginosa ATCC 15442 at a concentration

of 100% undiluted and 75% (v/v).

European Standard prEN 13727 (2010-03) Test

Objective: To determine basic bactericidal activity of test product.

Description of Test: European Norm prEN 13727 (2010-03): Quantitative

suspension test for the evaluation of bactericidal activity

in the medical area (phase 2, step 1).

Independent HygCen Centrum für Hygiene und medizinische Laboratory:

Produktsicherhelt GmbH, Schwerin, Germany

Date: 10 September 2010

Conclusions: According to prEN 13727 (2010-03), the test product

> possesses a bactericidal activity under clean conditions (0.03% bovine albumin) in 15 seconds at 20°C for the referenced strains Staphylococcus aureus ATCC 6538, Enterococcus hirae ATCC 10541, Escherichia coli NCTC 10538 and Pseudomonas aeruginosa ATCC 15442 at a

concentration fo 100% undiluted and diluted at 75% (v/v) in distilled water.

European Standard DIN EN 1040 (March 2006) Test

Objective: To determine basic bactericidal activity of test product

according to European Norm DIN EN 1040 (March 2006).

Description of Test: European Norm DIN EN 1040 (March 2006):

Quantitative suspension test for the evaluation of basic

bactericidal activity of chemical disinfectants and

antiseptics (phase 1)

Independent HygCen Centrum für Hygiene und medizinische Laboratory: Produktsicherhelt GmbH, Schwerin, Germany

Date: 8 September 2010

Conclusions: Test product is bactericidal according to European Norm

DIN EN 1040 (March 2006) after 15 seconds contact at 20°C versus *Pseudomonas aeruginosa* ATCC 15442 and *Staphylococcus aureus* ATCC 6538 at a concentration of

100% undiluted and 75% (v/v) diluted.

European Standard DIN EN 1040 (March 2006) Test

Objective: To determine basic bactericidal activity of test product

according to European Norm DIN EN 1040 (March 2006).

Description of Test: European Norm DIN EN 1040 (March 2006):

Quantitative suspension test for the evaluation of basic

bactericidal activity of chemical disinfectants and

antiseptics (phase 1)

Independent HygCen Centrum für Hygiene und medizinische Laboratory: Produktsicherhelt GmbH, Schwerin, Germany

Date: 7 May 2012

Conclusions: Test product is bactericidal according to European Norm

DIN EN 1040 (March 2006) after 15 seconds contact at

20°C versus *Escherichia coli* NCTC 10538 at a concentration of 80% and 75% (v/v) diluted.

European Standard DIN EN 14348 (April 2005) Test

Objective: To determine mycobactericidal activity of test product.

Description of Test: European Norm DIN EN 14348 (April 2005): Quantitative

suspension test for the evaluation of mycobactericidal activity of chemical disinfectants in the medical area including instrument disinfectants (phase2, step 1).

Independent HygCen Centrum für Hygiene und medizinische Laboratory: Produktsicherhelt GmbH, Schwerin, Germany

Date: 29 September 2010

Conclusions: According to DIN EN 14348 (April 2005), the test product

possesses a mycobactericidal activity for the referenced test strains *Mycobacterium terrae* ATCC 15755 and

Mycobacterium avium ATCC 15769 at 20°C after a contact

time of 15 seconds when undiluted.

European Standard DIN EN 1275 (March 2006) Test

Objective: To determine basic fungicidal activity of test product

according to European Norm DIN EN 1275 (March 2006).

Description of Test: European Norm EN 1275 (March 2006): Quantitative

suspension test for the evaluation of basic fungicidal or basic yeasticidal activity of chemical disinfectants and

antiseptics (phase 1)

Independent HygCen Centrum für Hygiene und medizinische Laboratory: Produktsicherhelt GmbH, Schwerin, Germany

Date: 8 September 2010

Conclusions: Test product is yeasticidal according to European Norm

EN 1275 (March 2006) after 15 seconds contact at 20°C versus *Candida albicans* ATCC 10231 at a concentration of 100% undiluted and 75% (v/v) diluted. Test product is fungicidal according to European Norm EN 1275 (March 2006) after 60 seconds contact at 20°C versus *Aspergillus*

niger ATCC 16404 at a concentration of 100% (v/v).

European Standard prEN 13624 (2010-01) Test

Objective: To determine basic fungicidal and yeasticidal activity of

test product.

Description of Test: European standard prEN 13624 (2010-01): Quantitative

suspension test for the evaluation of fungicidal or yeasticidal activity in the medical area (phase 2, step 1)

Independent HygCen Centrum für Hygiene und medizinische Laboratory: Produktsicherhelt GmbH, Schwerin, Germany

Date: 17 September 2010

Conclusions: According to prEN 13624 (2010-01) the test product

demonstrated fungicidal activity at 20°C under clean conditions (0.3 g/l bovine albumin) in 30 seconds against *Candida albicans* ATCC 10231 and in 60 seconds against

Aspergillus niger ATCC 16404 at 100% v/v.

European Standard PN-EN 1650 (2008) Test

Objective: To determine basic fungicidal activity of test product.

Description of Test: European standard PN-EN 1650 (2008): Quantitative

suspension test for the evaluation of fungicidal or yeasticidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic and

institutional areas (phase 2, step 1)

Independent

Laboratory:

Test Laboratorium SC, Katowice, Poland

Date: 5 June 2011

Conclusions: According to PN-EN 1650 (2008) the test product

demonstrated yeasticidal activity at 20°C under clean conditions (0.3 g/l bovine albumin) in 60 seconds against

Candida albicans ATCC 10231 at 50% and 80% v/v.

European Standard EN 14476:2007-02 Test

Objective: To evaluate the virus-inactivating properties of the test

product against murine norovirus (as surrogate for

human norovirus).

Description of Test: European standard EN 14476:2007-02: Virucidal

Quantitative Suspension Test for Chemical Disinfectants and Antiseptics used in Human Medicine (phase 2, step 1)

Independent Laboratory:

MikroLab GmbH, Bremen, Germany

Date:

15 September 2010

Conclusions: According to EN 14476:2007-02, the test product

demonstrated effectiveness, with a reduction factor of

≥5.00 log₁₀ reduction at a 100% dilution against

murine norovirus (Berlin 06 / 06 / DE Isolate S99) after a contact time of 15 seconds. Therefore, the test product can be declared as virucidal against murine norovirus

(Berlin 06 / 06 / DE Isolate S99).

European Standard EN 14476+A1:2007-01 Test

Objective: To evaluate the virus-inactivating properties of the test

product against poliovirus type 1.

Description of Test: European standard EN 14476+A1:2007-01: Virucidal

Quantitative Suspension Test for Chemical Disinfectants and Antiseptics used in Human Medicine (phase 2, step 1)

Independent

MICROBIOTEST, Sterling, Virginia, USA

Laboratory:

Date: 20 January 2012

Conclusions: According to EN 14476+A1:2007-01, the test product

demonstrated effectiveness, with a reduction factor of

≥4.00 log₁₀ reduction at a 100% dilution against

poliovirus type 1 (Strain LSc-2ab, Eurovir) after a contact time of 60 seconds. Therefore, the test product can be

declared as virucidal against poliovirus.

European Standard EN 14476+A1:2007-01 Test

Objective: To evaluate the virus-inactivating properties of the test

product against adenovirus type 5.

Description of Test: European standard EN 14476+A1:2007-01: Virucidal

Quantitative Suspension Test for Chemical Disinfectants and **Antiseptics used in Human Medicine (phase 2, step 1)**

Independent

MICROBIOTEST, Sterling, Virginia, USA

Laboratory:

Date: 20 January 2012

Conclusions: According to EN 14476+A1:2007-01, the test product

demonstrated effectiveness, with a reduction factor of

≥5.32 log₁₀ reduction at a 100% dilution against

adenovirus type 5 (ATCC VR-5) after a contact time of 30 seconds. Therefore, the test product can be declared as

virucidal against adenovirus type 5 (ATCC VR-5)

European Standard EN 14476+A1:2007-01 Test

Objective: To evaluate the virus-inactivating properties of the test

product against rotavirus.

Description of Test: European standard EN 14476+A1:2007-01: Virucidal

Quantitative Suspension Test for Chemical Disinfectants and **Antiseptics used in Human Medicine (phase 2, step 1)**

Independent Laboratory:

FONDEREPHAR, Toulouse, France

Date: 12 October 2011

Conclusions: According to EN 14476+A1:2007-01, the test product

demonstrated effectiveness, with a reduction factor of ≥4.0 log₁₀ reduction at a 100% and 40% dilution against *rotavirus* (ATCC VR2272) after a contact time of 30 seconds. Therefore, the test product can be declared as

virucidal against *rotavirus* (ATCC VR2272)

Virucidal Suspension Efficacy Test Human Influenza A Virus

Objective: The study is designed to measure virucidal effectiveness

of a test agent. It determines the potential of the test agent to kill Influenza A Virus, A/PR/8/34 (H1N1), in

suspension.

Description of Test: The test follows the principle outlined in the American

Society for Test Materials (ASTM) test method designated

E 1052 "Standard Test Method for Efficacy of

Antimicrobial Agents against Viruses in Suspension."

Independent

MICROBIOTEST, Inc., Sterling, Virginia USA

Laboratory:

Date: 18 March 2011

Conclusions: The test product inactivated Human Influenza A virus by ≥

6.17 logs when exposed to the test agent for 15 seconds

at 20°C.

Bovine Viral Diarrhea Virus (BVDV) (Surrogate of Hepatitis C Virus) According to DVV and RKI Virucidal Guideline

Objective: To evaluate the virus-inactivating properties of the test

product against Bovine Viral Diarrhea Virus (BVDV)

(Surrogate of Hepatitis C Virus).

Description of Test: Guideline of DVV and RKI for testing the virucidal efficacy

of chemical disinfectants in the medical area (2008)

Independent

MikroLab GmbH, Bremen, Germany

Laboratory:

Date:

21 May 2012

Conclusions: According to the DVV and RKI Guideline, the test product

demonstrated effectiveness (≥4-log reduction), undiluted (80%), against BVDV after a contact time of 15 seconds in the presence and absence of protein load (10% fetal

bovine serum).

Vaccinia Virus Strain Elstree According to DVV and RKI Virucidal Guideline

Objective: To evaluate the virus-inactivating properties of the test

product against Vaccinia virus strain Elstree.

Description of Test: Guideline of DVV and RKI for testing the virucidal efficacy

of chemical disinfectants in the medical area (2008)

Independent

MikroLab GmbH, Bremen, Germany

Laboratory:

Date: 21 May 2012

Conclusions: According to the DVV and RKI Guideline, the test product

demonstrated effectiveness, undiluted (80%), against vaccinia virus after a contact time of 15 seconds in the presence and absence of protein load (10% fetal bovine

serum).

Timed – Exposure Kill Evaluation

Objective: Evaluate the antimicrobial effectiveness of the product in

vitro.

Description of Test: Fifteen (15) second exposure kill evaluations were

performed utilizing fifty-six (56) challenge bacterial strains. The challenge inoculum was introduced to the test product at time zero; a portion of the sample was removed and placed in neutralizing media at the appropriate time (15 seconds). Standard plate counting techniques were used

to enumerate viable challenge microorganisms.

Independent Laboratory: BioScience Laboratories, Inc., Bozeman, MT, USA

Date: 19 October 2010

Results:

Challenge Microbe	ATCC No.	Exposure (seconds)	Percent Reduction
Acinetobacter baumannii	19606	15	99.9999
Bacteroides fragilis	25285	15	99.9913
Burkholderia cepacia	25416	15	99.9999
Burkholderia cepacia	25608	15	99.9999
Campylobacter jejuni	29428	15	99.9999
Citrobacter freundii	8090	15	99.9999
Clostridium difficile (vegetative cells)	9689	15	99.9943
Clostridium perfringens (vegetative cells)	13124	15	99.9999
Corynebacterium diphtheria	11913	15	99.9999
Enterobacter aerogenes	13048	15	99.9999
Enterococcus faecalis	19433	15	99.9999
Enterococcus faecalis	29212	15	99.9999
Enterococcus faecalis VRE	51299	15	99.9999
Enterococcus faecalis VRE	51575	15	99.9999
Enterococcus faecium	19434	15	99.9999
Enterococcus faecium (MDR, VRE)	51559	15	99.9999
Escherichia coli	11775	15	99.9999
Escherichia coli	25922	15	99.9999
Escherichia coli (O157:H7)	43888	15	99.9999
Escherichia coli (MDR, ESBL)	BAA-196	15	99.9999
Escherichia coli ESBL; Carbapenemase- Producing	BSLI #082710EcC P1*	15	99.9998
Haemophilus influenzae MDR	33930	15	99.9999
Klebsiella pneumonia Ozaenae	11296	15	99.9999
Klebsiella pneumonia Pneumonia	13883	15	99.9998
Klebsiella pneumonia pneumonia	27736	15	99.9998

Klebsiella pneumonia KPC 2 Positive; Carbapenemase Producing	BSLI#081710 KPCI*	15	99.9998
Lactobacillus plantarum	14917	15	99.9999
Listeria monocytogenes	7644	15	99.9999
Micrococcus luteus	7468	15	99.9992
Proteus hauseri	13315	15	99.9999
Proteus mirabilis	7002	15	99.9999
Pseudomonas aeruginosa	15442	15	99.9999
Pseudomonas aeruginosa	27853	15	99.9999
Salmonella enterica enterica serovar Enteritidis	13076	15	99.9999
Serratia marcescens	8100	15	99.9999
Serratia marcescens	14756	15	99.9999
Shigella dysenteriae	13313	15	99.9999
Shigella sonnei	11060	15	99.9999
Staphylococcus aureus aureus	6538	15	99.9999
Staphylococcus aureus aureus	29213	15	99.9999
Staphylococcus aureus aureus (MRSA)	33591	15	99.9999
Staphylococcus aureus aureus (MRSA)	33592	15	99.9999
Staphylococcus aureus (MRSA) (VRSA)	BSLI #062707 NARSAVRSal*	15	99.9999
Staphylococcus aureus (MRSA) (NARSA Strain NRS384 USA 300)	BSLI #12085 NRSa384*	15	99.9999
Staphylococcus epidermidis	12228	15	99.9999
Staphylococcus epidermidis MRSE	51625	15	99.9998
Staphylococcus haemolyticus	43252	15	99.9998
Staphylococcus hominis hominis	27845	15	99.9997
Staphylococcus saprophyticus	49453	15	99.9999
Streptococcus pneumoniae	6303	15	99.9999
Streptococcus pneumoniae	49619	15	99.9999
Streptococcus pyogenes	14289	15	99.9999
Streptococcus pyogenes	19615	15	99.9999
Yeasts	ATCC No.	Exposure (seconds)	Percent Reduction
Candida albicans	18804	15	99.9999
	1		
Candida albicans	66027 13803	15 15	99.9999 99.9999

Conclusions:

Very effective reduction of gram-negative and gram-positive bacteria and yeasts was demonstrated.

ESBL- Extended Spectrum Beta-Lactamase Producer
MDR – Multi-Drug Resistant
MRSA - Methicillin Resistant *Staphylococcus aureus*MRSE – Methicillin Resistant *Stpaphyococcus epidemidis*NARSA – Network on the Antimicrobial Resistance in *Staphylococcus aureus*

VRE – Vancomycin-Resistant <i>Enterococcus</i> *- Clinical Isolate
- Cirrical isolate

Irritancy Data and Allergy Test Results

Human Repeated Insult Patch Test

Objective: Determination of the dermal irritation and sensitization

potential of the product.

Description of Test: Human repeated insult patch test.

Independent BioScreen Testing Services, Torr

Laboratory:

BioScreen Testing Services, Torrance, California, USA

Date: 27 October, 2010

Results: No dermal reactions were observed during the induction

or challenge phases of the study.

Conclusions: Test product did not demonstrate a potential for eliciting

dermal irritation or sensitization.

21 Day Cumulative Irritancy Assay with Delayed Challenge

Objective: Evaluation of skin irritation potential in humans.

Description of Test: Phillips et al (Toxic and Applied Pharmacology 21:369-

382) summarizes the method utilized for this evaluation. Fresh materials are applied daily, 5 days per week, for 21

days to the same site (patches were not moved or

reapplied on the weekends).

Independent

endent RCTS, INC. Irving, TX USA

Laboratory:

Date: 6 October 2010

Results: CIT Average Score = 0.35 (scale 0 - 4; Baby Oil = 0.24)

Challenge Phase: Non-sensitizing

Conclusions: Product has a low potential for skin irritation and allergic

contact dermatitis.

Compatibility Test Results

Glove Compatibility

Description of ASTM D5151-99

Test: Glove samples were immersed in product for a period of 2 hours

and then examined for leaks. The control samples were not

exposed to product.

Testing Lab Smithers Scientific Services, Akron, OH, USA

Date: 18 October 2010

Purpose of Study Determine the effect of product on Medical Gloves including latex,

Nitrile and vinyl gloves.

Sample Size: 100 control gloves and 100 gloves were tested with on each of

three glove types. Tested were latex, vinyl and nitrile gloves.

Results: Latex, nitrile, and vinyl gloves exposed to product were not

significantly different than the control gloves.

Summary: The test product did not significantly impact the integrity of latex,

nitrile and vinyl medical gloves.

Sensory Test for Potential Taint from Direct Contact with Test Materials (EN ISO 4120:2007)

Objective: To determine whether the test product has the potential

to taint when exposed to food via hands treated with the

test product.

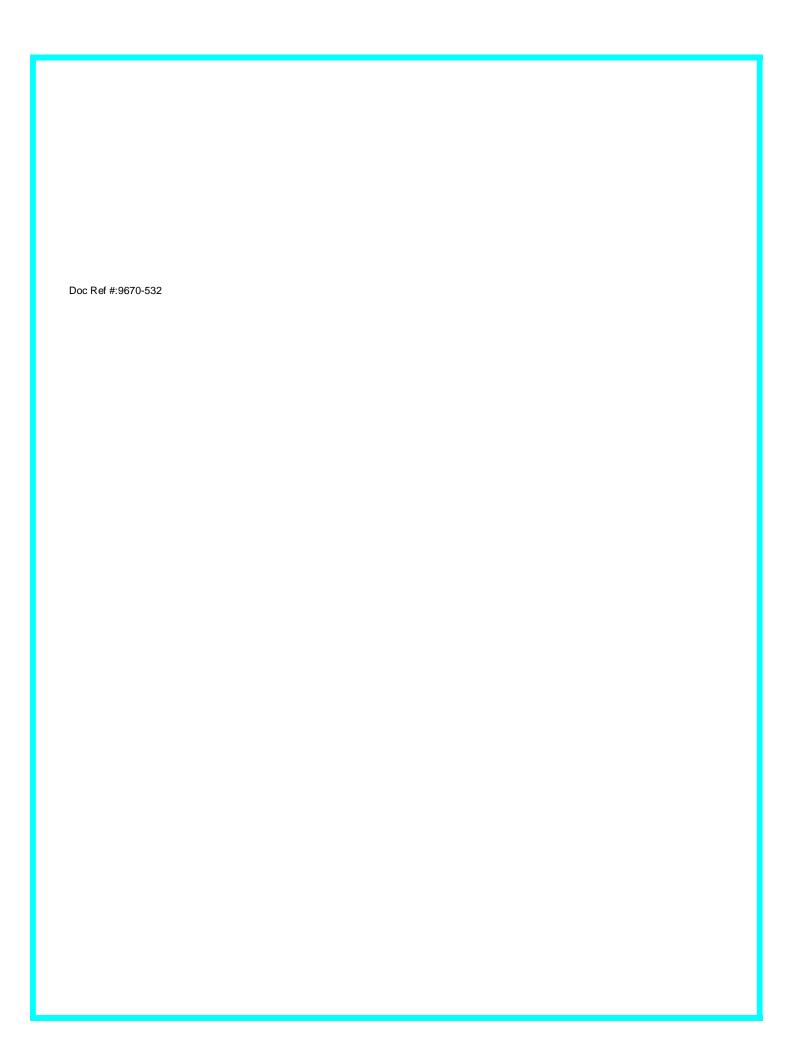
Description of Test: Test is conducted using the EN ISO 4120 Sensory

Analysis Triangle Test Methodology (July 2007) using a panel of 42 sensory assessors. In this case the test-product is intended to be used as a leave-on skin

sanitiser product. Chocolate was used as the food testing

item.

Independent


Campden Technology Limited, Gloucestershire, UK.

Laboratory:

Date: 20 March 2012

Conclusions: The product does not have the potential to taint food

when used as a leave-on skin sanitiser.

